資料來源
在本節中,我們介紹如何使用 ML 中的資料來源載入資料。除了 Parquet、CSV、JSON 和 JDBC 等一些一般資料來源之外,我們還提供一些針對 ML 的特定資料來源。
目錄
影像資料來源
此影像資料來源用於從目錄載入影像檔案,它可以透過 Java 函式庫中的 ImageIO
將壓縮影像(jpeg、png 等)載入原始影像表示。載入的 DataFrame 有一個 StructType
欄位:「image」,其中包含儲存為影像架構的影像資料。image
欄位的架構如下:
- origin:
StringType
(表示影像的檔案路徑) - height:
IntegerType
(影像的高度) - width:
IntegerType
(影像的寬度) - nChannels:
IntegerType
(影像通道的數量) - mode:
IntegerType
(與 OpenCV 相容的類型) - data:
BinaryType
(與 OpenCV 相容順序的影像位元組:大多數情況下為逐行 BGR)
在 PySpark 中,我們提供 Spark SQL 資料來源 API,將影像資料載入為 DataFrame。
>>> df = spark.read.format("image").option("dropInvalid", True).load("data/mllib/images/origin/kittens")
>>> df.select("image.origin", "image.width", "image.height").show(truncate=False)
+-----------------------------------------------------------------------+-----+------+
|origin |width|height|
+-----------------------------------------------------------------------+-----+------+
|file:///spark/data/mllib/images/origin/kittens/54893.jpg |300 |311 |
|file:///spark/data/mllib/images/origin/kittens/DP802813.jpg |199 |313 |
|file:///spark/data/mllib/images/origin/kittens/29.5.a_b_EGDP022204.jpg |300 |200 |
|file:///spark/data/mllib/images/origin/kittens/DP153539.jpg |300 |296 |
+-----------------------------------------------------------------------+-----+------+
ImageDataSource
實作 Spark SQL 資料來源 API,將影像資料載入為 DataFrame。
scala> val df = spark.read.format("image").option("dropInvalid", true).load("data/mllib/images/origin/kittens")
df: org.apache.spark.sql.DataFrame = [image: struct<origin: string, height: int ... 4 more fields>]
scala> df.select("image.origin", "image.width", "image.height").show(truncate=false)
+-----------------------------------------------------------------------+-----+------+
|origin |width|height|
+-----------------------------------------------------------------------+-----+------+
|file:///spark/data/mllib/images/origin/kittens/54893.jpg |300 |311 |
|file:///spark/data/mllib/images/origin/kittens/DP802813.jpg |199 |313 |
|file:///spark/data/mllib/images/origin/kittens/29.5.a_b_EGDP022204.jpg |300 |200 |
|file:///spark/data/mllib/images/origin/kittens/DP153539.jpg |300 |296 |
+-----------------------------------------------------------------------+-----+------+
ImageDataSource
實作 Spark SQL 資料來源 API,將影像資料載入為 DataFrame。
Dataset<Row> imagesDF = spark.read().format("image").option("dropInvalid", true).load("data/mllib/images/origin/kittens");
imageDF.select("image.origin", "image.width", "image.height").show(false);
/*
Will output:
+-----------------------------------------------------------------------+-----+------+
|origin |width|height|
+-----------------------------------------------------------------------+-----+------+
|file:///spark/data/mllib/images/origin/kittens/54893.jpg |300 |311 |
|file:///spark/data/mllib/images/origin/kittens/DP802813.jpg |199 |313 |
|file:///spark/data/mllib/images/origin/kittens/29.5.a_b_EGDP022204.jpg |300 |200 |
|file:///spark/data/mllib/images/origin/kittens/DP153539.jpg |300 |296 |
+-----------------------------------------------------------------------+-----+------+
*/
在 SparkR 中,我們提供 Spark SQL 資料來源 API,將影像資料載入為 DataFrame。
> df = read.df("data/mllib/images/origin/kittens", "image")
> head(select(df, df$image.origin, df$image.width, df$image.height))
1 file:///spark/data/mllib/images/origin/kittens/54893.jpg
2 file:///spark/data/mllib/images/origin/kittens/DP802813.jpg
3 file:///spark/data/mllib/images/origin/kittens/29.5.a_b_EGDP022204.jpg
4 file:///spark/data/mllib/images/origin/kittens/DP153539.jpg
width height
1 300 311
2 199 313
3 300 200
4 300 296
LIBSVM 資料來源
此 LIBSVM
資料來源用於從目錄載入「libsvm」類型檔案。載入的 DataFrame 有兩個欄位:標籤(label)包含儲存為雙精度的標籤,以及特徵(features)包含儲存為向量的特徵向量。欄位的架構如下:
- label:
DoubleType
(表示實例標籤) - features:
VectorUDT
(表示特徵向量)
在 PySpark 中,我們提供 Spark SQL 資料來源 API,將 LIBSVM
資料載入為 DataFrame。
>>> df = spark.read.format("libsvm").option("numFeatures", "780").load("data/mllib/sample_libsvm_data.txt")
>>> df.show(10)
+-----+--------------------+
|label| features|
+-----+--------------------+
| 0.0|(780,[127,128,129...|
| 1.0|(780,[158,159,160...|
| 1.0|(780,[124,125,126...|
| 1.0|(780,[152,153,154...|
| 1.0|(780,[151,152,153...|
| 0.0|(780,[129,130,131...|
| 1.0|(780,[158,159,160...|
| 1.0|(780,[99,100,101,...|
| 0.0|(780,[154,155,156...|
| 0.0|(780,[127,128,129...|
+-----+--------------------+
only showing top 10 rows
LibSVMDataSource
實作 Spark SQL 資料來源 API,將 LIBSVM
資料載入為 DataFrame。
scala> val df = spark.read.format("libsvm").option("numFeatures", "780").load("data/mllib/sample_libsvm_data.txt")
df: org.apache.spark.sql.DataFrame = [label: double, features: vector]
scala> df.show(10)
+-----+--------------------+
|label| features|
+-----+--------------------+
| 0.0|(780,[127,128,129...|
| 1.0|(780,[158,159,160...|
| 1.0|(780,[124,125,126...|
| 1.0|(780,[152,153,154...|
| 1.0|(780,[151,152,153...|
| 0.0|(780,[129,130,131...|
| 1.0|(780,[158,159,160...|
| 1.0|(780,[99,100,101,...|
| 0.0|(780,[154,155,156...|
| 0.0|(780,[127,128,129...|
+-----+--------------------+
only showing top 10 rows
LibSVMDataSource
實作 Spark SQL 資料來源 API,將 LIBSVM
資料載入為 DataFrame。
Dataset<Row> df = spark.read.format("libsvm").option("numFeatures", "780").load("data/mllib/sample_libsvm_data.txt");
df.show(10);
/*
Will output:
+-----+--------------------+
|label| features|
+-----+--------------------+
| 0.0|(780,[127,128,129...|
| 1.0|(780,[158,159,160...|
| 1.0|(780,[124,125,126...|
| 1.0|(780,[152,153,154...|
| 1.0|(780,[151,152,153...|
| 0.0|(780,[129,130,131...|
| 1.0|(780,[158,159,160...|
| 1.0|(780,[99,100,101,...|
| 0.0|(780,[154,155,156...|
| 0.0|(780,[127,128,129...|
+-----+--------------------+
only showing top 10 rows
*/
在 SparkR 中,我們提供 Spark SQL 資料來源 API,將 LIBSVM
資料載入為 DataFrame。
> df = read.df("data/mllib/sample_libsvm_data.txt", "libsvm")
> head(select(df, df$label, df$features), 10)
label features
1 0 <environment: 0x7fe6d35366e8>
2 1 <environment: 0x7fe6d353bf78>
3 1 <environment: 0x7fe6d3541840>
4 1 <environment: 0x7fe6d3545108>
5 1 <environment: 0x7fe6d354c8e0>
6 0 <environment: 0x7fe6d35501a8>
7 1 <environment: 0x7fe6d3555a70>
8 1 <environment: 0x7fe6d3559338>
9 0 <environment: 0x7fe6d355cc00>
10 0 <environment: 0x7fe6d35643d8>