基本統計
\[ \newcommand{\R}{\mathbb{R}} \newcommand{\E}{\mathbb{E}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \newcommand{\wv}{\mathbf{w}} \newcommand{\av}{\mathbf{\alpha}} \newcommand{\bv}{\mathbf{b}} \newcommand{\N}{\mathbb{N}} \newcommand{\id}{\mathbf{I}} \newcommand{\ind}{\mathbf{1}} \newcommand{\0}{\mathbf{0}} \newcommand{\unit}{\mathbf{e}} \newcommand{\one}{\mathbf{1}} \newcommand{\zero}{\mathbf{0}} \]
目錄
相關性
計算兩組資料之間的相關性是統計學中常見的操作。在 spark.ml
中,我們提供彈性來計算許多組之間的成對相關性。目前支援的相關性方法為 Pearson 相關性和 Spearman 相關性。
Correlation
使用指定的 method 計算輸入向量資料集的相關性矩陣。輸出將會是包含向量欄位相關性矩陣的 DataFrame。
from pyspark.ml.linalg import Vectors
from pyspark.ml.stat import Correlation
data = [(Vectors.sparse(4, [(0, 1.0), (3, -2.0)]),),
(Vectors.dense([4.0, 5.0, 0.0, 3.0]),),
(Vectors.dense([6.0, 7.0, 0.0, 8.0]),),
(Vectors.sparse(4, [(0, 9.0), (3, 1.0)]),)]
df = spark.createDataFrame(data, ["features"])
r1 = Correlation.corr(df, "features").head()
print("Pearson correlation matrix:\n" + str(r1[0]))
r2 = Correlation.corr(df, "features", "spearman").head()
print("Spearman correlation matrix:\n" + str(r2[0]))
Correlation
使用指定的 method 計算輸入向量資料集的相關性矩陣。輸出將會是包含向量欄位相關性矩陣的 DataFrame。
import org.apache.spark.ml.linalg.{Matrix, Vectors}
import org.apache.spark.ml.stat.Correlation
import org.apache.spark.sql.Row
val data = Seq(
Vectors.sparse(4, Seq((0, 1.0), (3, -2.0))),
Vectors.dense(4.0, 5.0, 0.0, 3.0),
Vectors.dense(6.0, 7.0, 0.0, 8.0),
Vectors.sparse(4, Seq((0, 9.0), (3, 1.0)))
)
val df = data.map(Tuple1.apply).toDF("features")
val Row(coeff1: Matrix) = Correlation.corr(df, "features").head
println(s"Pearson correlation matrix:\n $coeff1")
val Row(coeff2: Matrix) = Correlation.corr(df, "features", "spearman").head
println(s"Spearman correlation matrix:\n $coeff2")
Correlation
使用指定的 method 計算輸入向量資料集的相關性矩陣。輸出將會是包含向量欄位相關性矩陣的 DataFrame。
import java.util.Arrays;
import java.util.List;
import org.apache.spark.ml.linalg.Vectors;
import org.apache.spark.ml.linalg.VectorUDT;
import org.apache.spark.ml.stat.Correlation;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.*;
List<Row> data = Arrays.asList(
RowFactory.create(Vectors.sparse(4, new int[]{0, 3}, new double[]{1.0, -2.0})),
RowFactory.create(Vectors.dense(4.0, 5.0, 0.0, 3.0)),
RowFactory.create(Vectors.dense(6.0, 7.0, 0.0, 8.0)),
RowFactory.create(Vectors.sparse(4, new int[]{0, 3}, new double[]{9.0, 1.0}))
);
StructType schema = new StructType(new StructField[]{
new StructField("features", new VectorUDT(), false, Metadata.empty()),
});
Dataset<Row> df = spark.createDataFrame(data, schema);
Row r1 = Correlation.corr(df, "features").head();
System.out.println("Pearson correlation matrix:\n" + r1.get(0).toString());
Row r2 = Correlation.corr(df, "features", "spearman").head();
System.out.println("Spearman correlation matrix:\n" + r2.get(0).toString());
假設檢定
假設檢定是統計學中強大的工具,用於判斷結果是否具有統計顯著性,也就是這個結果是否發生在機率內。 spark.ml
目前支援 Pearson 的卡方( $\chi^2$)獨立性檢定。
ChiSquareTest
ChiSquareTest
對每個特徵針對標籤進行 Pearson 獨立性檢定。對於每個特徵,(特徵、標籤)配對會轉換成列聯表,並計算其卡方統計量。所有標籤和特徵值都必須是類別。
有關 API 的詳細資訊,請參閱 ChiSquareTest
Python 文件。
from pyspark.ml.linalg import Vectors
from pyspark.ml.stat import ChiSquareTest
data = [(0.0, Vectors.dense(0.5, 10.0)),
(0.0, Vectors.dense(1.5, 20.0)),
(1.0, Vectors.dense(1.5, 30.0)),
(0.0, Vectors.dense(3.5, 30.0)),
(0.0, Vectors.dense(3.5, 40.0)),
(1.0, Vectors.dense(3.5, 40.0))]
df = spark.createDataFrame(data, ["label", "features"])
r = ChiSquareTest.test(df, "features", "label").head()
print("pValues: " + str(r.pValues))
print("degreesOfFreedom: " + str(r.degreesOfFreedom))
print("statistics: " + str(r.statistics))
有關 API 的詳細資訊,請參閱 ChiSquareTest
Scala 文件。
import org.apache.spark.ml.linalg.{Vector, Vectors}
import org.apache.spark.ml.stat.ChiSquareTest
val data = Seq(
(0.0, Vectors.dense(0.5, 10.0)),
(0.0, Vectors.dense(1.5, 20.0)),
(1.0, Vectors.dense(1.5, 30.0)),
(0.0, Vectors.dense(3.5, 30.0)),
(0.0, Vectors.dense(3.5, 40.0)),
(1.0, Vectors.dense(3.5, 40.0))
)
val df = data.toDF("label", "features")
val chi = ChiSquareTest.test(df, "features", "label").head
println(s"pValues = ${chi.getAs[Vector](0)}")
println(s"degreesOfFreedom ${chi.getSeq[Int](1).mkString("[", ",", "]")}")
println(s"statistics ${chi.getAs[Vector](2)}")
有關 API 的詳細資訊,請參閱 ChiSquareTest
Java 文件。
import java.util.Arrays;
import java.util.List;
import org.apache.spark.ml.linalg.Vectors;
import org.apache.spark.ml.linalg.VectorUDT;
import org.apache.spark.ml.stat.ChiSquareTest;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.*;
List<Row> data = Arrays.asList(
RowFactory.create(0.0, Vectors.dense(0.5, 10.0)),
RowFactory.create(0.0, Vectors.dense(1.5, 20.0)),
RowFactory.create(1.0, Vectors.dense(1.5, 30.0)),
RowFactory.create(0.0, Vectors.dense(3.5, 30.0)),
RowFactory.create(0.0, Vectors.dense(3.5, 40.0)),
RowFactory.create(1.0, Vectors.dense(3.5, 40.0))
);
StructType schema = new StructType(new StructField[]{
new StructField("label", DataTypes.DoubleType, false, Metadata.empty()),
new StructField("features", new VectorUDT(), false, Metadata.empty()),
});
Dataset<Row> df = spark.createDataFrame(data, schema);
Row r = ChiSquareTest.test(df, "features", "label").head();
System.out.println("pValues: " + r.get(0).toString());
System.out.println("degreesOfFreedom: " + r.getList(1).toString());
System.out.println("statistics: " + r.get(2).toString());
Summarizer
我們透過 Summarizer
為 Dataframe
提供向量欄摘要統計資料。可用的指標有欄位明細的最大值、最小值、平均值、總和、變異數、標準差和非零個數,以及總計數。
有關 API 的詳細資訊,請參閱 Summarizer
Python 文件。
from pyspark.ml.stat import Summarizer
from pyspark.sql import Row
from pyspark.ml.linalg import Vectors
df = sc.parallelize([Row(weight=1.0, features=Vectors.dense(1.0, 1.0, 1.0)),
Row(weight=0.0, features=Vectors.dense(1.0, 2.0, 3.0))]).toDF()
# create summarizer for multiple metrics "mean" and "count"
summarizer = Summarizer.metrics("mean", "count")
# compute statistics for multiple metrics with weight
df.select(summarizer.summary(df.features, df.weight)).show(truncate=False)
# compute statistics for multiple metrics without weight
df.select(summarizer.summary(df.features)).show(truncate=False)
# compute statistics for single metric "mean" with weight
df.select(Summarizer.mean(df.features, df.weight)).show(truncate=False)
# compute statistics for single metric "mean" without weight
df.select(Summarizer.mean(df.features)).show(truncate=False)
下列範例示範如何使用 Summarizer
計算輸入資料框的向量欄平均值和變異數,有權重欄和沒有權重欄。
import org.apache.spark.ml.linalg.{Vector, Vectors}
import org.apache.spark.ml.stat.Summarizer
val data = Seq(
(Vectors.dense(2.0, 3.0, 5.0), 1.0),
(Vectors.dense(4.0, 6.0, 7.0), 2.0)
)
val df = data.toDF("features", "weight")
val (meanVal, varianceVal) = df.select(metrics("mean", "variance")
.summary($"features", $"weight").as("summary"))
.select("summary.mean", "summary.variance")
.as[(Vector, Vector)].first()
println(s"with weight: mean = ${meanVal}, variance = ${varianceVal}")
val (meanVal2, varianceVal2) = df.select(mean($"features"), variance($"features"))
.as[(Vector, Vector)].first()
println(s"without weight: mean = ${meanVal2}, sum = ${varianceVal2}")
下列範例示範如何使用 Summarizer
計算輸入資料框的向量欄平均值和變異數,有權重欄和沒有權重欄。
import java.util.Arrays;
import java.util.List;
import org.apache.spark.ml.linalg.Vector;
import org.apache.spark.ml.linalg.Vectors;
import org.apache.spark.ml.linalg.VectorUDT;
import org.apache.spark.ml.stat.Summarizer;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
List<Row> data = Arrays.asList(
RowFactory.create(Vectors.dense(2.0, 3.0, 5.0), 1.0),
RowFactory.create(Vectors.dense(4.0, 6.0, 7.0), 2.0)
);
StructType schema = new StructType(new StructField[]{
new StructField("features", new VectorUDT(), false, Metadata.empty()),
new StructField("weight", DataTypes.DoubleType, false, Metadata.empty())
});
Dataset<Row> df = spark.createDataFrame(data, schema);
Row result1 = df.select(Summarizer.metrics("mean", "variance")
.summary(new Column("features"), new Column("weight")).as("summary"))
.select("summary.mean", "summary.variance").first();
System.out.println("with weight: mean = " + result1.<Vector>getAs(0).toString() +
", variance = " + result1.<Vector>getAs(1).toString());
Row result2 = df.select(
Summarizer.mean(new Column("features")),
Summarizer.variance(new Column("features"))
).first();
System.out.println("without weight: mean = " + result2.<Vector>getAs(0).toString() +
", variance = " + result2.<Vector>getAs(1).toString());